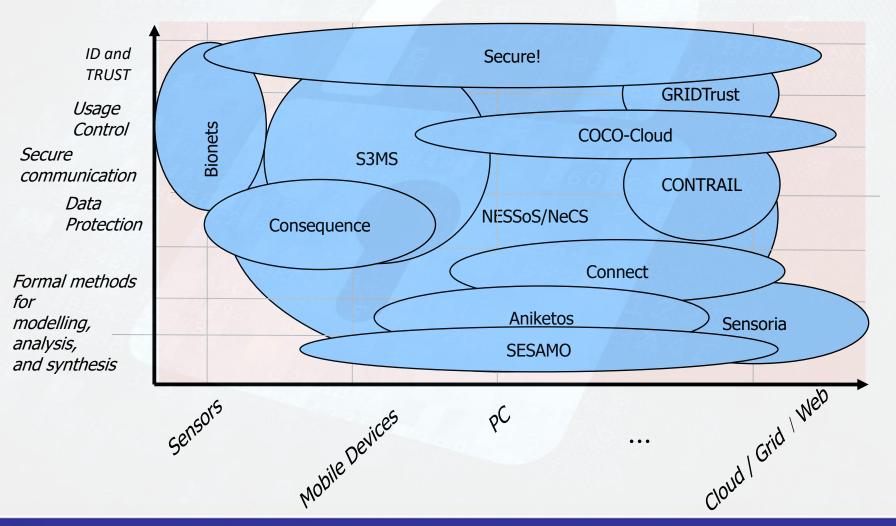
Mobile device security or MADAM: A Multi Level Anomaly Detector for Android Malware

Fabio Martinelli
National Research Council of Italy
(CNR)

Joint work with Andrea Saracino, Daniele Sgandurra, Gianluca Dini, Francesco Mercaldo ...

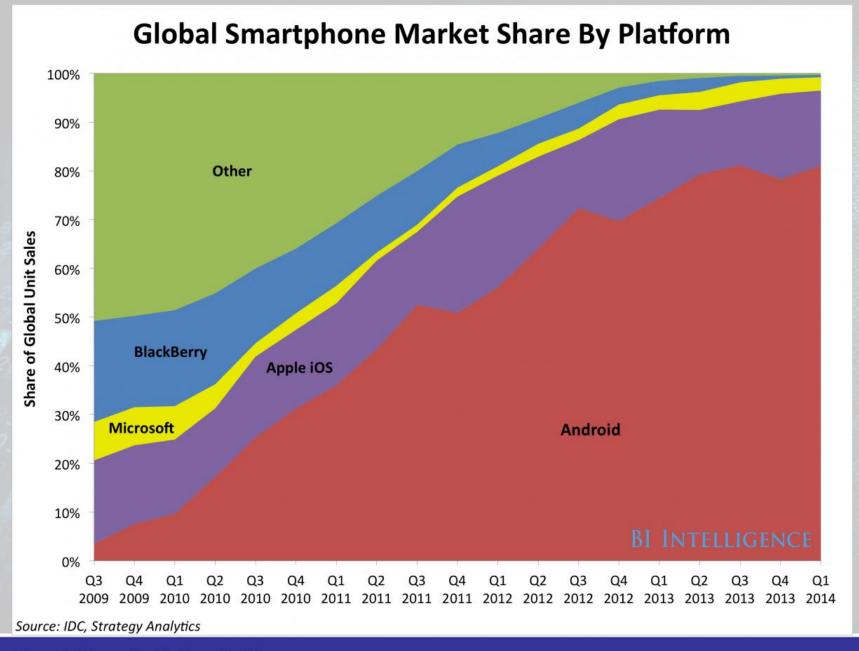
Outline

- National Research Council of Italy in a nutshell
- Security for mobile devices (android)
- Madam framework
- Future work


CNR in a nutshell

- The Italian National Research Council is the main public research organization in Italy
 - CNR has near 9000 employees split in:
 - 100 research Institutes
 - The main Italian organization as capability to attract EU project funding
- My Institute of informatics and Telematics (IIT-CNR)
 - Location: Pisa, Tuscany, Italy.
 - Has 4 research groups:
 - Security, networking, Algorithms, Web technologies
 - IIT-CNR manages the ccTLD ".it" and it is part of EURid consortium that manages ".eu"
- Fabio Martinelli is the coordinator of all the cyber security activities at CNR
- Security Group of IIT-CNR:
 - 6 researchers
 - 4 Post-docs
 - 3 PhD students
 - 1 Administrative
 - 4 software engineers
 - 3 associate researchers from University

EU projects/ Research Areas

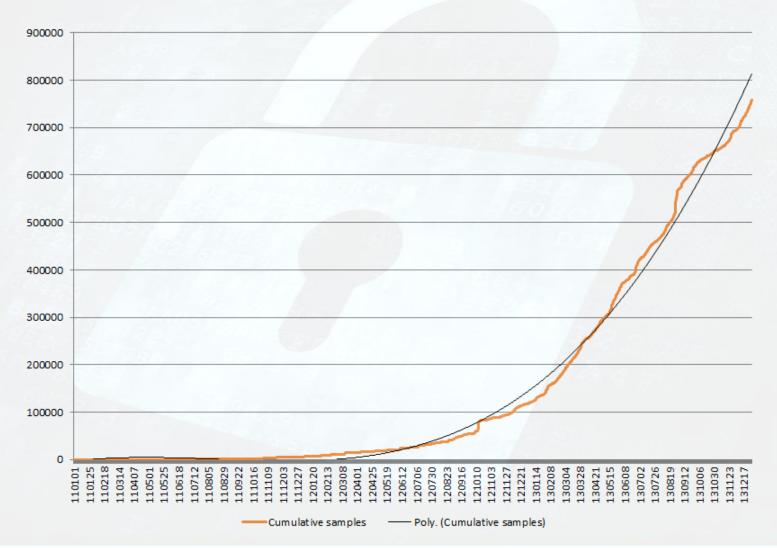


Current Main Activities

- Developing an promoting the European Cyber Security Strategic Research Agenda produced by the European Commission promoted Public Private Platform for Network and Information Security (NIS)
 - I am the coordinator of the WG3 on secure ICT research and innovation
 - More than 200 researchers from all the main research/academic/governmental institutions
 - Current Agenda is available at the ENISA URL:
 - https://resilience.enisa.europa.eu/nis-platform/shared-documents/wg3-documents
 - Agenda is taken as basis the cPPP on cyber security
- Coordination of the European Research and Training Network in Cyber Security (NeCS)
 - More than 12 partners
 - The objectives if to create an active community of PhD/young post docs students interested
 - Research and training opportunities
 - Fellowships in several European countries (including CNR in Italy) and travel available for young students

Security

 Android is the target of 99% of security attacks on mobile devices.


 Apps are practically the main vector to bring security attacks on Android.

Yearly malware increase: exponential

Malware Increase on Android

Why Android

Not enough yet?

Android is Open Source

Availability of unofficial market

Android Markets

- Installing applications from unknown sources.
- Free versions of apps which have a cost on the official market.
- Limited-to-no control on the applications.
- Repackaged apps
 - Trojanized apps

Android Markets (2)

- Dangerous and malicious applications have been found even on the official market (Google Play).
 - Loose controls (Bouncer) not effective against zero day attacks.
 - Policy of forced removal of malicious apps from victim's devices.

Android Security State of the Art

- Producer Side:
 - Native Security Mechanisms:
 - App Isolation
 - Permission System (access control)
 - Blocking unknown sources by default
 - Online detection of malicious apps at install time (online antivirus).
 - Pro: Native, no overhead.
 - Cons: Easy to deceive

Android Security State of the Art (2)

- Commercial Side:
 - Anti-Virus code base signature based.
 - Pretty much as standard computer AVs.
 - Also same brands -> Mobile edition
 - Pro:
 - Ease of use and no false positives
 - Cons:
 - Uneffective against new threats (zero day)

Android Security State of the Art (3)

- Research Side:
 - Static analysis framework
 - Decompiles and analyzes security relevant features of app code.
 - Pro: Can be run offline and almost accurate.
 - Cons: Attack specific and could miss run time misbehaviors
 - Information flow analysis
 - Detection of privacy leakage and app vulnerability
 - Example: Taintdroid
 - Pro: Effective in finding exploitable vulnerabilities.
 - Cons: Mainly concern only the subset of privacy related attacks

Android Security State of the Art (4)

- Still more research:
 - Security policies enforcement
 - Code instumentation-based (Example: App Guard).
 - Pro: Fine grained control.
 - Cons: Require modification of device OS.
 - Behavior based Intrusion Detection System:
 - Monitor and classify behaviors as genuine or malicious at runtime.
 - Pro: Can detect zero days.
 - Cons: Can raise False Positives

Detecting Malicious Behaviors

- Works at runtime.
- Code independency:
 - Not tricked by obfuscation
 - Not tricked by polymorphic malware
 - Not tricked by malware which download malicious code at runtime.

Malicious Behaviors

- Steal privacy sensitive data
 - Contacts
 - Text messages
- Steal user's money
 - Send text message
 - Register to premium services
 - Try to intercept bank transactions
- Show undesired advertisements (spam)
- Take control of the mobile device
- •

Malware: Some Numbers

- Almost 1 M malicious apps in the wild.
- More than 200 different malware families.
 - Family: Different applications with the same malicious code.

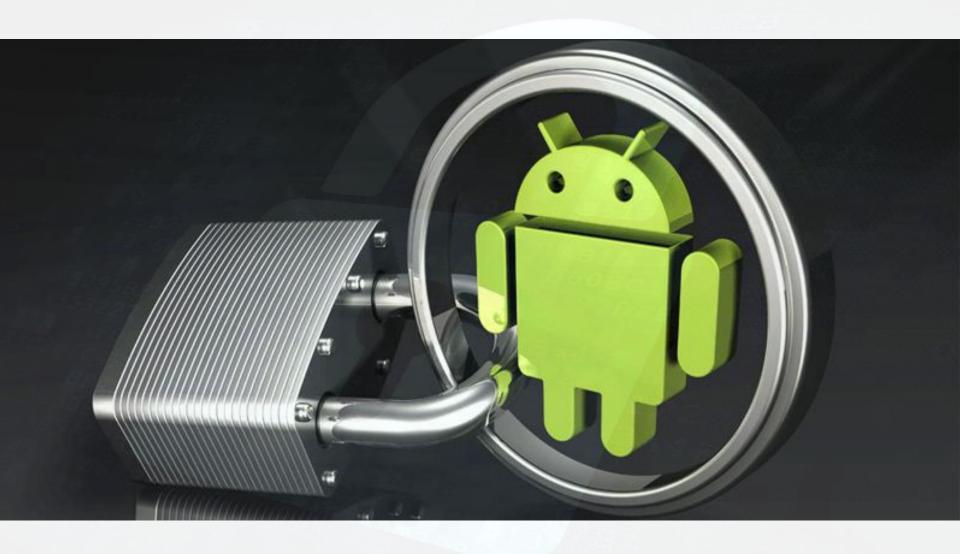
Finding: Several implementations for the same misbehavior

Malware Classes

- Malware Class: Different applications with different malicious code, performing however the same (or very similar) misbehavior.
- 7 Malware classes identified... out of 150 analyzed families.

Malware Classes (2)

- **SMS Trojan**: Send SMS messages without user authorization.
- · Rootkit: Attempt to take super user privileges.
- Botnet: Open a backdoor and wait for commands from a C&C server.
- Spyware: Steal sensitive information related to user privacy.



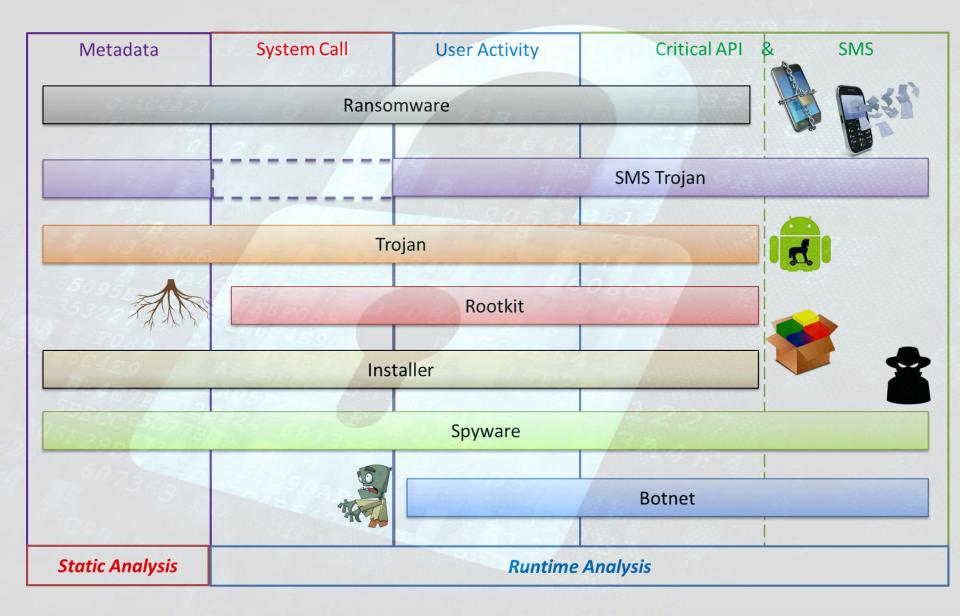
Malware Classes (3)

- Installer: Try to download and install additional malicious applications, without the user authorization.
- Ransomware: Attempt to take control of the device, blocking it till a fee is not paid by the user.
- Trojan: The few families (5/125) with custom misbehaviors not falling in anyone of the former categories.

MADAM

<u>Multi-Level Anomaly Detector for Android</u> <u>Malware</u>

- It combines several approaches:
 - Anomaly Based Intrusion Detection and Prevention System.
 - · Host based.
 - · White list.
 - Zero day attacks.


Multi-Level for Higher Detection

- MADAM monitors 5 sets of features.
- Each set as standalone or in cooperation with others is used to spot a specific misbehavior class.

Global Analysis

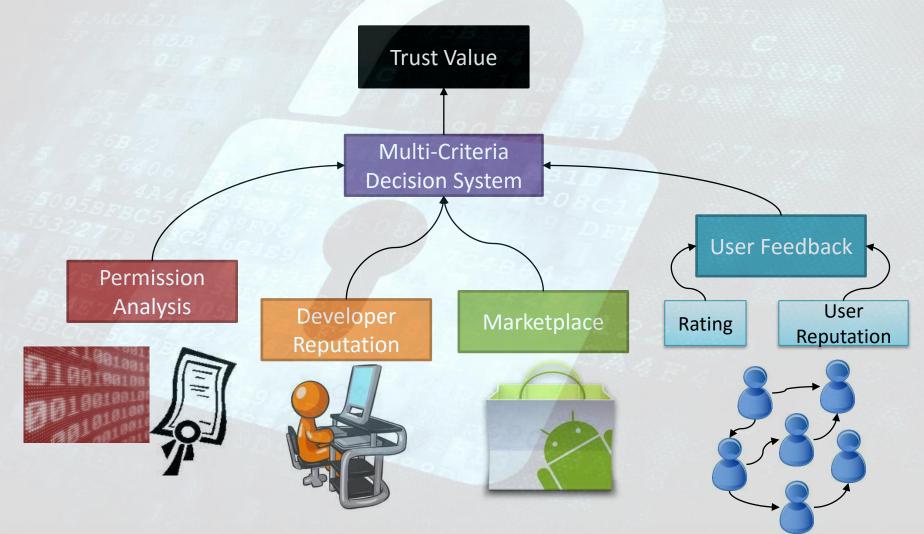
- Monitor device at different levels:
 - System Calls
 - 13 SysCalls relevant
 - API Calls
 - Outgoing SMS
 - Active processes
 - Package installation
 - User Activity
 - User Present / Not Present

Per App Analysis

- Issued System Calls
- Sent Text Messages
 - Recipient
 - Message text
 - Frequency
- Number of processes per package
- Static Information
 - Required permissions
 - Market of provenance
 - Developer reputation
 - Rating and user feedbacks
 - Code analysis (n-grams)

Static Analysis

- Performed at deploy time, before app can be executed.
- Controls app installed from any sources (not deceived by Installer malware).
- Analysis of app metadata.
 - Does not require to decompile binaries.
 - Low performance overhead.
- Analysis of n-grams (code analysis)


Static Analysis (2)

- N-grams analysis: analysis of frequencies of opCode n-grams (sequences of actions) to be used as features for classifiers.
- Classifier trained with known malicious frequencies.
- Application for static recognition of malicious apps.

Static Analysis (2)

Static Analysis (3)


- Permission analysis:
 - Extracted from *Manifest* file of APKs (AndroidManifest.xml)
 - Threat score assigned to each permission on three parameters:
 - Privacy Threat
 - Financial Threat
 - System Threat

Privacy Threat

- Permissions that allow an application to:
 - Read Contacts
 - Read text messages
 - Access user's accounts and passwords
 - Read IMEI and location

Financial Threat

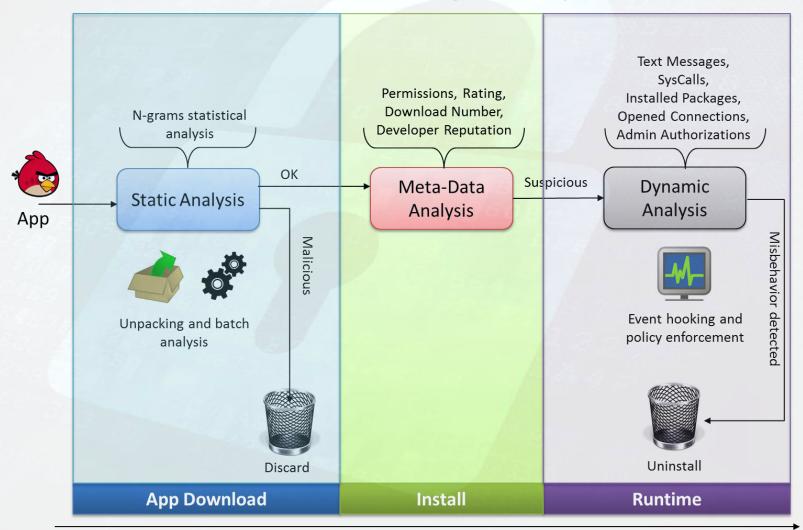
- Permissions that allow an application to:
 - Perform phone calls.
 - Send SMS messages.
 - Use the internet connection.
 - Modify connection settings.



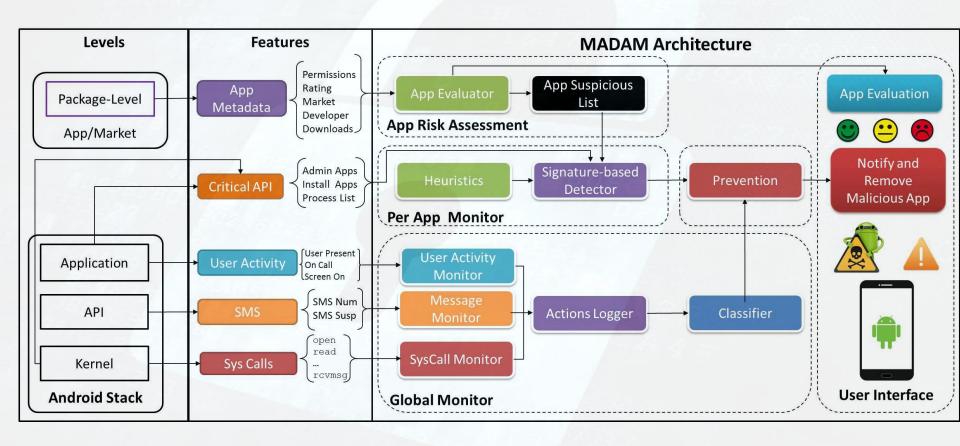
System Threat

- Permissions that allow an application to:
 - Install/Uninstall applications on the phone.
 - Enable/Disable connection interfaces (Wi-Fi, Bluetooth, ...).
 - Switch on/off the smartphone screen.

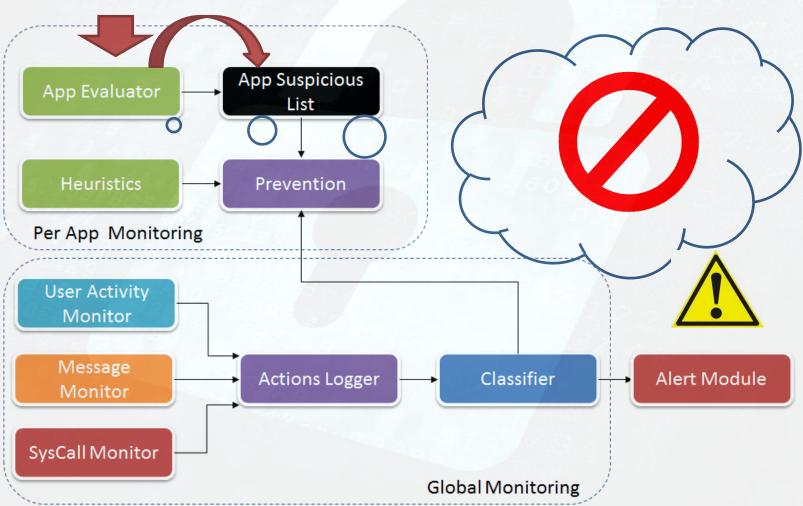
Static Analysis (4)


- Based on the Analytical Hierarchy Process (AHP)
 - Weighted sum of scores assigned to the 5 parameters

- Simultaneously analyzes all the parameters and returns a decision:
 - Trusted
 - Untrusted


MADAM Workflow

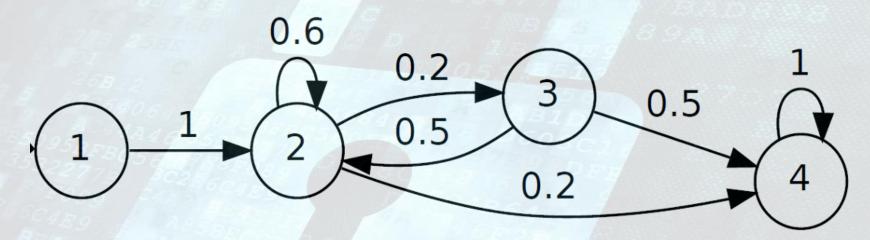
Madam Architecture



MADAM Workflow

Policies

- Potentially malicious action evaluated against custom security policies.
- Security Policies can be:
 - Manually selected (security policies)
 - Inferred from classifiers (conditions on system calls).
 - Based on specifical behavioral probabilistic patterns expressed through probabilistic automata or logic formula.


Policies (2)

- Examples:
 - More than 5k reads when user non active -> misbehavior.
 - SMS sent to number not in contacts -> misbehavior
 - App behavior deviates from expected one -> misbehavior
 - App behavior does not match policy specification
 -> misbehavior

Policies (3)

- Probabilistic graph from execution logs to describe expected behavior.
- Markov Chain representation.
- Runtime behavior reconstruction and matching.

Prevention

- If an action violates a policy, it is blocked.
- User is notified of the violation if performed by a suspicious-listed activity.
- Active policies can be set by the user at any time.

Global Monitor

 Classification done through a K-NN classifier with k=1 (1-NN).

- Based on numerical features
 - Issued SysCalls
 - Sent Messages
 - Seconds of user activity
- Good behavior and Bad behaviors form different clusters.

Global Monitor (2)

- Comparison between 2 behaviors (vectors)
 - User Idle (top) VS User Active (bottom)

open	ioctl	brk	read	write	exit	close	sendto	sendmsg	recvfrom	recvmsg	Idleness	SMS Num	SMS Susp
6	19	18	1	4	0	7	16	2	2	0	0	0	0
147	652	192	711	4	282	229	7	15	7	13	1	0	0

Classification performed through vectors similarity

$$Similarity(x,y) = -\sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

Detection Result (Statistics)

- Training Set: 30000 behavior vectors.
- Malicious Vectors: 800
 - Real malware + Artificially generated (SMOTE)
- TPR = 100%
- FPR = 0,01%

Malware Detection Results

- Three tested datasets of malicious apps:
 - Genome (2012), Contagio (2015), Drebin (2014)
 - Total number of tested apps: 2784
 - Number of families: 123
- Global Accuracy: 99,7%
- 100% accuracy against, SMS Trojan, Installer, Ransomware, Rootkit and general trojan.
- Able to detect the Android.Poder trojan, still undetected by most AV.

Discussion

- Malware perform malicious action demanding OS or other components to effectively do the misbehavior.
 - Difficult to find anomalies in syscall issued by apps.
 - Easy to find globally.
 - Static and dynamic approaches are complementary.
- Detection Results compared with VirusTotal.
 - Better accuracy (99,7% (MADAM) vs 98% (VT))

Detailed Results

Malware Type	Families	Samples		atic Sam	Dyn Fam	amic Sam	MADAM	VirusTotal
Botnet	2	7	1	2	0	0	2	7
Installer	6	406	3	236	6	406	406	400
Ransomware	3	30	2	11	3	30	30	30
Rootkit	13	543	10	436	13	543	543	541
SMS Trojan	41	1309	34	785	41	1309	1309	1290
Spyware	38	231	38	231	21	161	231	220
Trojan	5	23	5	20	2	19	20	22
Hybrid	14	243	10	189	14	243	243	243
Composition	1	2	0	0	2	2	2	0
Total	123	2794	103	1910	102	2713	2784	2753
3 00	99.7%	98%						

Performance

- Testbed:
 - LG Nexus 4
- Overhead (Quadrant tool):
 - Global 1,4%
 - CPU: 0,9%
 - Memory: 9,4%
 - Video 0%
 - Battery: 3%

False Positive Analysis

 On a set of 9804 genuine apps the 0,2% has been considered suspicious by the static analysis module.

At runtime:

- Results extracted as average of one week of experiments on three devices with different users.
- the average amount of <u>FP per day</u> is of 1 (*FPR* 1*10^-5).

Requirements

- Non custom operative device.
- Necessary to have the device rooted (jailbreak).
 - Activate the kernel module.
 - Intercept events and stopping them.

References

- A. Saracino; D. Sgandurra; G. Dini; F. Martinelli, "MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention," in IEEE Transactions on Dependable and Secure Computing, vol.PP, no.99, (2016)
- Gianluca Dini, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi, Andrea Saracino, Daniele Sgandurra, «Risk Analysis of Android Applications: A User-Centric Solution», FGCS (2016).
- Mariantonietta La Polla, Fabio Martinelli, Daniele Sgandurra: «A Survey on Security for Mobile Devices». IEEE Communications Surveys and Tutorials 15 (2013)
- Gianluca Dini, Fabio Martinelli, Andrea Saracino, Daniele Sgandurra: MADAM: A Multi-level Anomaly Detector for Android Malware. MMM-ACNS 2012: 240-253
- Gianluca Dini, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi, Andrea Saracino, Daniele Sgandurra «A Multi-Criteria-based Evaluation of Android Applications», InTrust 2012
- Gianluca Dini, Fabio Martinelli, Andrea Saracino, Daniele Sgandurra:
 «Probabilistic Contract Compliance for Mobile Applications». ARES 2013

Future Works

- Increasing the number of policies, their extraction methods and evaluation strategies.
- Using collaborative approaches for intrusion detection
- Using privacy aware techniques for IDS

Thank You

fabio.martinelli@iit.cnr.it

Related Work

- Copperdroid: performs malware stimulation to discover hidden behavior.
 - Considers actions at Java and JNI level.
 - VM and System call based.
 - Runs offline (not on device).
- TaintDroid: analyzes information flows to detect and stops privacy leakage.
 - Allows the definition of security policies for data protection.
 - Requires OS modifications.
 - Attack Specific

Related Work (2)

- Alterdroid: Framework for analysis of Android application to detect faults in static resources.
 - Effective in detecting repackaged apps.
 - Attack specific.
- Aurasium: Framework for enforcement of app specific security policies.
 - Does not consider global features and can be evaded.

Related Work (3)

- MOSSDroid: static analysis framework for Android malware.
 - Signature based detection.
 - Evaded by zero day threats.
- Drebin: framework for static analysis and classification of Android malware.
 - Analyzed a large amount of samples.
 - Offline analysis.
 - Drebin DB analyzed by MADAM.

Probabilistic Contract Based Security

- Verifying if app behavior matches security policies.
- Probabilistic security policies:
 - Greater flexibility
 - Smaller fall-out (FPR)
- Generation of probabilistic contract from app execution (sandbox).
- Learning user probabilistic behavior.

FJARTMOS